Table 4.—Mean altitudes and temperatures of significant points identifiable as tropopauses during July 1939, classified according to the potential temperatures (10-degree intervals between 290° and 409° A.) with which they are identified (based on radiosonde observations)

																					•
	Atlanta, Ga.			Bismarck, N. Dak.			Charleston, S. C.			Denver, Colo.			El Paso, Tex.			Joliet, Ill.			Miami, Fla.		
Potential tempera- tures	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature	₩	Mean altitude (km.) m. s. l.	Mean temperature	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature	Number of cases	Mean altitude (km.) m. s. l.	Mean temperature
310-319 320-329 330-339 340-349 350-359 360-369 370-379 380-389 390-399 400-409	1 17 18 18 18 5 13 4 3	11. 0 12. 1 13. 4 14. 8 15. 5 16. 1 16. 6 17. 3	-48.0 -53.1 -60.4 -66.5 -69.0 -69.4 -70.8 -69.0	6 16 13 12 5 8 4 5	9. 7 11. 1 12. 1 13. 2 14. 9 15. 4 16. 0	-44.0 -50.5 -54.3 -59.8 -63.0 -63.6 -64.2 -65.0	7 11 5 9 3 4	13. 6 14. 6 15. 7 16. 0 17. 1	51. 1 62. 0 65. 0 70. 3 69. 0 72. 0	6 10 8 7 7 3	13. 4 14. 6 13. 0 15. 6	-68.0	10 14 13 5 4 2 3	12. 8 13. 9 15. 1 15. 8 16. 5 17. 0 17. 4	-58. 6 -63. 6 -69. 9 -72. 4 -73. 2 -72. 5 -70. 7	2 11 20 13 6 7 6 3 3	11. 7 13. 4 13. 8 14. 8	-37. (-41. 1 -50. 1 -59. 8 -62. 1 -64. 6 -66. 3	2 2 7 7 5 21 2 6 6 7 9 6 8 5 6 8 5 5 6 8 5	13. 5 14. 6 15. 6 16. 1 16. 9	-59. 0 -51. 4 -60. 5 -65. 2 -68. 0 -68. 4 -69. 0 -71. 2
Mean potential temperature (weighted) 1		36	4. 7		353	3.7		364.	9		3	58. 4		378	3. 5		357	7. 2		. 36	
		Nashville, Tenn.			Oa	kland,	Calif. Oklahor			ma City, Om			aha, Nebr.		ult Ste. Marie Mich.			Washington, D. C.			
Potential temperature		Number of cases	Mean altitude (km.) m. s. l.	Mean tempera- ture	Number of cases	Mean altitude (km.) m. s. l.	Mesn tempera- ture	Number of cases	Moon altitude	(km.) m. s. l.	Mesn tempera- ture	Number of cases	Mean altitude (km.) m. s. l.	Mesn tempera- ture	Number of cases	Mean altitude (km.) m. s. l.	Mean tempera-	tare	Number of cases	Mean altitude (km.) m. s. l.	Mean tempera- ture
290-299 300-309																					
300-309 310-319 320-329 330-339 340-349 350-359 360-369 370-379 380-389 390-399 400-409		2 4 18 23 16 11 6 5	10. 4 10. 8 11. 4 13. 1 14. 5 15. 4 15. 8 16. 6 17. 1	-47.5 -44.8 -47.3 -57.1 -65.3 -68.5 -66.2 -68.6 -68.3	10 25 10 14 10 9 5	10. 8 11. 8 13. 2 14. 4 15. 0 15. 7 16. 2 18. 8	6 -48.6 2 -56.9 4 -63.4 0 -64.0 1 -65.1 2 -66.2	1	9 7 2 9 6 5	12. 1 13. 4 14. 9 15. 5 16. 1 16. 6	-46. 0 -52. 3 -60. 3 -67. 8 -68. 8 -69. 0 -68. 4 -74. 0	8 22 13 17 11 10 9	11. 0 12. 2 13. 4 14. 3 15. 1 16. 0 16. 3 16. 7	-47. 8 -54. 0 -60. 2 -63. 1 -65. 3 -66. 8 -65. 4 -65. 0	17 10 6 3 12	9. 11. 7 12. 13. 14. 14. 15. 15.	$ \begin{array}{c cccc} 6 & -4 \\ 1 & -5 \\ 2 & -5 \\ 1 & -6 \\ 4 & -6 \\ 6 & -6 \\ \end{array} $	1.3 1.0 3.0	7 11 5 4 2	10. 2 12. 3 13. 4 13. 3 14. 0	-42.1 -55.7 -61.4 -54.5 -52.5 -67.0 -63.0
Weighted means	er-		13. 7 360	-58.9 .8		13. 4	-56. 7			14. 4 365.	-63. 4 1		13. 9 36	-60. 2 3. 8		12.	3 -5 349. 9	5. 1		12. 6 353	-54. 2 . 2

¹ Applies to tables for previous months also.

RIVERS AND FLOODS

[River and Flood Division, MERRILL BERNARD, in charge]

By Bennett Swenson

The precipitation during the month of October 1939 was decidedly deficient over much of the country and the majority of the rivers were unusually low at the close of the month.

No floods were reported with the exception of one in the lower Rio Grande on October 12-14. This flood resulted from heavy rains on the 10th to 11th which were centered principally over the tributaries which enter the lower Rio Grande from the Mexican side.

These rains resulted in a sharp increase of the stages in the river from Rio Grande City, Tex., downstream. Flood stages were exceeded slightly at a few points including Rio Grande City and Mercedes, Tex., where crest stages of 21.6 and 21.4 feet, respectively, were reached. However, very little water overflowed on the American side of the river, and no appreciable damages resulted.

Table of flood stages, October 1939

River and station	Flood stage	Above stages		Crest			
	stago	From-	То—	Stage	Date		
West Gulf Drainage							
Rio Grande: Rio Grande City, Tex Mercedes, Tex	Feet 21 21	12 13	12 14	Feet 21. 6 21. 4	12 14		